Skip to main content
Log in

Endothelial Cells Morphology in Response to Combined WSS and Biaxial CS: Introduction of Effective Strain Ratio

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Endothelial cells (ECs) morphology strongly depends on the imposed mechanical stimuli. These mechanical stimuli include wall shear stress (WSS) and biaxial cyclic stretches (CS). Under combined loading, the effect of CS is not as simple as pure CS. The present study investigates the morphological response of ECs to the realistic mechanical stimuli.

Methods

The cell population is theoretically studied using our previous validated model. The mechanical stimuli on ECs are described using four parameters; WSS magnitude (0 to 2.0 Pa), WSS angle (− 50° to 50°), and biaxial CS in two perpendicular directions (0 to 10%). The morphology of ECs is reported using four parameters; average shape index (SI) and orientation angle (OA) of the cell population as well as the standard deviation (SD) of SI and OA as measures for scattering of cells’ SI and OA from these average values.

Results

A new effective strain ratio (ESR) is defined as the ratio of the undesirable CS to the desirable one. The obtained results of the model, illustrated that the SI and OA of cells increase with absolute value of ESR. In addition, the scattering in the SI of cells decreases with the absolute value of ESR, which means that the cell shapes become more regular. It is shown that the angular irregularity of cells increases at higher ESR values.

Conclusions

The results indicated that, the defined ESR is a stand-alone parameter for describing the realistic mechanical loading on the ECs and their morphological response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bernardi, L., C. Giampietro, V. Marina, M. Genta, E. Mazza, and A. Ferrari. Adaptive reorientation of endothelial collectives in response to strain. Integr. Biol. 10:527–538, 2018.

    Google Scholar 

  2. Breen, L. T., P. E. McHugh, and B. P. Murphy. Multi-axial mechanical stimulation of HUVECs demonstrates that combined loading is not equivalent to the superposition of individual wall shear stress and tensile hoop stress components. J. Biomech. Eng. 131:081001, 2009.

    Google Scholar 

  3. Campbell, J. H., and G. R. Campbell. The cell biology of atherosclerosis-new developments. Aust. N. Z. J. Med. 27:497–500, 1997.

    Google Scholar 

  4. Choi, G., C. P. Cheng, N. M. Wilson, and C. A. Taylor. Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Ann. Biomed. Eng. 37:14–33, 2009.

    Google Scholar 

  5. Choi, G., G. Xiong, C. P. Cheng, and C. A. Taylor. Methods for characterizing human coronary artery deformation from cardiac-gated computed tomography data. IEEE Trans. Biomed. Eng. 61:2582–2592, 2014.

    Google Scholar 

  6. Choi, G., J. Chen, J. Carroll, and C. P. Cheng. Handbook of Vascular Motion. New York: Elsevier, pp. 87–116, 2019.

    Google Scholar 

  7. Cucina, A., A. V. Sterpetti, G. Pupelis, A. Fragale, S. Lepidi, A. Cavallaro, Q. Giustiniani, and L. S. D’Angelo. Shear stress induces changes in the morphology and cytoskeleton organisation of arterial endothelial cells. Eur. J. Vasc. Endovasc. Surg. 9:86–92, 1995.

    Google Scholar 

  8. Cunningham, K. S., and A. I. Gotlieb. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Invest. 85:9–23, 2005.

    Google Scholar 

  9. Ding, Z., and M. H. Friedman. Dynamics of human coronary arterial motion and its potential role in coronary atherogenesis. J. Biomech. Eng. 122:488–492, 2000.

    Google Scholar 

  10. Dolan, J. M., J. Kolega, and H. Meng. High wall shear stress and spatial gradients in vascular pathology: a review. Ann. Biomed. Eng. 41:1411–1427, 2013.

    Google Scholar 

  11. Gatland, I. R. Numerical integration of Newton’s equations including velocity-dependent forces. Am. J. Phys. 62:259–265, 1994.

    Google Scholar 

  12. George, S. J., and J. Johnson. Atherosclerosis: molecular and cellular mechanisms. New York: Wiley, 2010.

    Google Scholar 

  13. Gimbrone, M. A., and G. García-Cardeña. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc. Pathol. 22:9–15, 2013.

    Google Scholar 

  14. Girard, P. R., and R. M. Nerem. Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins. J. Cell. Physiol. 163:179–193, 1995.

    Google Scholar 

  15. Green, J., S. Waters, K. Shakesheff, and H. Byrne. A mathematical model of liver cell aggregation in vitro. Bull. Math. Biol. 71:906–930, 2009.

    MathSciNet  MATH  Google Scholar 

  16. Haghighipour, N., M. Tafazzoli-Shadpour, M. A. Shokrgozar, and S. Amini. Effects of cyclic stretch waveform on endothelial cell morphology using fractal analysis. Artif. Org. 34:481–490, 2010.

    Google Scholar 

  17. Helmlinger, G., R. Geiger, S. Schreck, and R. Nerem. Effects of pulsatile flow on cultured vascular endothelial cell morphology. J. Biomech. Eng. 113:123–131, 1991.

    Google Scholar 

  18. Hsu, H.-J., C.-F. Lee, and R. Kaunas. A dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch. PLoS ONE 4:e4853, 2009.

    Google Scholar 

  19. Jamali, Y., M. Azimi, and M. R. Mofrad. A sub-cellular viscoelastic model for cell population mechanics. PLoS ONE 5:e12097, 2010.

    Google Scholar 

  20. Jufri, N. F., A. Mohamedali, A. Avolio, and M. S. Baker. Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vasc. Cell 7:8, 2015.

    Google Scholar 

  21. Kang, J., R. L. Steward, Y. Kim, R. S. Schwartz, P. R. LeDuc, and K. M. Puskar. Response of an actin filament network model under cyclic stretching through a coarse grained Monte Carlo approach. J. Theor. Biol. 274:109–119, 2011.

    Google Scholar 

  22. Kaunas, R., and H.-J. Hsu. A kinematic model of stretch-induced stress fiber turnover and reorientation. J. Theor. Biol. 257:320–330, 2009.

    MathSciNet  MATH  Google Scholar 

  23. Lee, C.-F., C. Haase, S. Deguchi, and R. Kaunas. Cyclic stretch-induced stress fiber dynamics—dependence on strain rate, Rho-kinase and MLCK. Biochem. Biophys. Res. Commun. 401:344–349, 2010.

    Google Scholar 

  24. Levesque, M., and R. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107:341–347, 1985.

    Google Scholar 

  25. Levesque, M., E. Sprague, C. Schwartz, and R. Nerem. The influence of shear stress on cultured vascular endothelial cells: the stress response of an anchorage-dependent mammalian cell. Biotechnol. Prog. 5:1–8, 1989.

    Google Scholar 

  26. Meza, D. The Effect of Combined Fluid Shear Stress and Cyclic Tensile Stretch on Vascular Endothelial Cells. New York: State University of New York at Stony Brook, 2017.

    Google Scholar 

  27. Moore, Jr, J. E., E. Bürki, A. Suciu, S. Zhao, M. Burnier, H. R. Brunner, and J.-J. Meister. A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch. Ann. Biomed. Eng. 22:416–422, 1994.

    Google Scholar 

  28. Nerem, R. M., M. J. Levesque, and J. Cornhill. Vascular endothelial morphology as an indicator of the pattern of blood flow. J. Biomech. Eng. 103:172–176, 1981.

    Google Scholar 

  29. Ngu, H., L. Lu, S. J. Oswald, S. Davis, S. Nag, and F. Yin. Strain-induced orientation response of endothelial cells: effect of substratum adhesiveness and actinmyosin contractile level. Mol. Cell. Biomech. 5:69, 2008.

    Google Scholar 

  30. Noria, S., F. Xu, S. McCue, M. Jones, A. I. Gotlieb, and B. L. Langille. Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress. Am. J. Pathol. 164:1211–1223, 2004.

    Google Scholar 

  31. Ohashi, T., and M. Sato. Remodeling of vascular endothelial cells exposed to fluid shear stress: experimental and numerical approach. Fluid Dyn. Res. 37:40–59, 2005.

    MATH  Google Scholar 

  32. Ookawa, K., M. Sato, and N. Ohshima. Changes in the microstructure of cultured porcine aortic endothelial cells in the early stage after applying a fluid-imposed shear stress. J. Biomech. 25:1321–1328, 1992.

    Google Scholar 

  33. Osborn, E. A., A. Rabodzey, C. F. Dewey, and J. H. Hartwig. Endothelial actin cytoskeleton remodeling during mechanostimulation with fluid shear stress. Am. J. Physiol. Cell Physiol. 290:C444–C452, 2006.

    Google Scholar 

  34. Owatverot, T. B., S. J. Oswald, Y. Chen, J. J. Wille, and F. C. Yin. Effect of combined cyclic stretch and fluid shear stress on endothelial cell morphological responses. J. Biomech. Eng. 127:374–382, 2005.

    Google Scholar 

  35. Pakravan, H., M. Saidi, and B. Firoozabadi. A mechanical model for morphological response of endothelial cells under combined wall shear stress and cyclic stretch loadings. Biomechanics and Modeling in Mechanobiology:1-15, 2016.

  36. Pakravan, H. A., M. S. Saidi, and B. Firoozabadi. FSI simulation of a healthy coronary bifurcation for studing the mechanical stimuli of endothelial cells under different physiological conditions. J. Mech. Med. Biol. 2015. https://doi.org/10.1142/S021951941550089X.

    Article  Google Scholar 

  37. Pakravan, H. A., M. S. Saidi, and B. Firoozabadi. A multiscale approach for determining the morphology of endothelial cells at a coronary artery. Int. J. Numer. Methods Biomed. Eng. 33:e2891, 2017.

    Google Scholar 

  38. Pao, Y., J. Lu, and E. Ritman. Bending and twisting of an in vivo coronary artery at a bifurcation. J. Biomech. 25:287–295, 1992.

    Google Scholar 

  39. Reneman, R. S., T. Arts, and A. P. Hoeks. Wall shear stress–an important determinant of endothelial cell function and structure–in the arterial system in vivo. J. Vasc. Res. 43:251–269, 2006.

    Google Scholar 

  40. Sáez, P., M. Malvè, and M. Martínez. A theoretical model of the endothelial cell morphology due to different waveforms. J. Theor. Biol. 379:16–23, 2015.

    MATH  Google Scholar 

  41. Sipkema, P., P. J. van der Linden, N. Westerhof, and F. C. Yin. Effect of cyclic axial stretch of rat arteries on endothelial cytoskeletal morphology and vascular reactivity. J. Biomech. 36:653–659, 2003.

    Google Scholar 

  42. Stamenović, D., K. A. Lazopoulos, A. Pirentis, and B. Suki. Mechanical stability determines stress fiber and focal adhesion orientation. Cell. Mol. Bioeng. 2:475–485, 2009.

    Google Scholar 

  43. Suciu, A., G. Civelekoglu, Y. Tardy, and J.-J. Meister. Model for the alignment of actin filaments in endothelial cells subjected to fluid shear stress. Bull. Math. Biol. 59:1029–1046, 1997.

    MATH  Google Scholar 

  44. Vogel, R. A. Coronary risk factors, endothelial function, and atherosclerosis: a review. Clin. Cardiol. 20:426–432, 1997.

    Google Scholar 

  45. Wang, J. H.-C., P. Goldschmidt-Clermont, J. Wille, and F. C.-P. Yin. Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J. Biomech. 34:1563–1572, 2001.

    Google Scholar 

  46. Yamada, H., T. Takemasa, and T. Yamaguchi. Theoretical study of intracellular stress fiber orientation under cyclic deformation. J. Biomech. 33:1501–1505, 2000.

    Google Scholar 

  47. Yamaguchi, T., Y. Yamamoto, and H. Liu. Computational mechanical model studies on the spontaneous emergent morphogenesis of the cultured endothelial cells. J. Biomech. 33:115–126, 2000.

    Google Scholar 

  48. Zeng, Y., A. K. Yip, S.-K. Teo, and K.-H. Chiam. A three-dimensional random network model of the cytoskeleton and its role in mechanotransduction and nucleus deformation. Biomech. Model. Mechanobiol. 11:49–59, 2012.

    Google Scholar 

  49. Zhao, S., A. Suciu, T. Ziegler, J. E. Moore, E. Bürki, J.-J. Meister, and H. R. Brunner. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. Atertio. Thromb. Vasc. Biol. 15:1781–1786, 1995.

    Google Scholar 

  50. Ziegler, T., K. Bouzourène, V. J. Harrison, H. R. Brunner, and D. Hayoz. Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Atertio. Thromb. Vasc. Biol. 18:686–692, 1998.

    Google Scholar 

Download references

Conflict of interest

Hossein Ali Pakravan, Mohammad Said Saidi, and Bahar Firoozabadi declare that they have no conflicts of interest.

Ethical Approval

No human studies were carried out by the authors for this article; no animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ali Pakravan.

Additional information

Associate Editor Edward Sander oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakravan, H.A., Saidi, M.S. & Firoozabadi, B. Endothelial Cells Morphology in Response to Combined WSS and Biaxial CS: Introduction of Effective Strain Ratio. Cel. Mol. Bioeng. 13, 647–657 (2020). https://doi.org/10.1007/s12195-020-00618-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-020-00618-z

Keywords

Navigation